Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Database
Language
Document Type
Year range
1.
J Proteome Res ; 22(6): 1908-1922, 2023 06 02.
Article in English | MEDLINE | ID: covidwho-2314020

ABSTRACT

The adsorbed vaccine SARS-CoV-2 (inactivated) produced by Sinovac (SV) was the first vaccine against COVID-19 to be used in Brazil. To understand the metabolic effects of SV in Brazilian subjects, NMR-based metabolomics was used, and the immune response was studied in Brazilian subjects. Forty adults without (group-, n = 23) and with previous COVID-19 infection (group+, n = 17) were followed-up for 90 days postcompletion of the vaccine regimen. After 90 days, our results showed that subjects had increased levels of lipoproteins, lipids, and N-acetylation of glycoproteins (NAG) as well as decreased levels of amino acids, lactate, citrate, and 3-hydroxypropionate. NAG and threonine were the highest correlated metabolites with N and S proteins, and neutralizing Ab levels. This study sheds light on the immunometabolism associated with the use of SV in Brazilian subjects from Rio de Janeiro and identifies potential metabolic markers associated with the immune status.


Subject(s)
COVID-19 , SARS-CoV-2 , Adult , Humans , Brazil , Antibody Formation , COVID-19 Vaccines , Immunization , Antibodies, Viral
2.
Mol Med ; 28(1): 153, 2022 12 12.
Article in English | MEDLINE | ID: covidwho-2162292

ABSTRACT

BACKGROUND: Multisystem Inflammatory Syndrome in Children (MIS-C) is a life-threatening complication of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, which manifests as a hyper inflammatory process with multiorgan involvement in predominantly healthy children in the weeks following mild or asymptomatic coronavirus disease 2019 (COVID-19). However, host monogenic predisposing factors to MIS-C remain elusive. METHODS: Herein, we used whole exome sequencing (WES) on 16 MIS-C Brazilian patients to identify single nucleotide/InDels variants as predisposition factors associated with MIS-C. RESULTS: We identified ten very rare variants in eight genes (FREM1, MPO, POLG, C6, C9, ABCA4, ABCC6, and BSCL2) as the most promising candidates to be related to a higher risk of MIS-C development. These variants may propitiate a less effective immune response to infection or trigger the inflammatory response or yet a delayed hyperimmune response to SARS-CoV-2. Protein-Protein Interactions (PPIs) among the products of the mutated genes revealed an integrated network, enriched for immune and inflammatory response mechanisms with some of the direct partners representing gene products previously associated with MIS-C and Kawasaki disease (KD). In addition, the PPIs direct partners are also enriched for COVID-19-related gene sets. HLA alleles prediction from WES data allowed the identification of at least one risk allele in 100% of the MIS-C patients. CONCLUSIONS: This study is the first to explore host MIS-C-associated variants in a Latin American admixed population. Besides expanding the spectrum of MIS-C-associated variants, our findings highlight the relevance of using WES for characterising the genetic interindividual variability associated with COVID-19 complications and ratify the presence of overlapping/convergent mechanisms among MIS-C, KD and COVID-19, crucial for future therapeutic management.


Subject(s)
COVID-19 , SARS-CoV-2 , Child , Humans , COVID-19/complications , COVID-19/genetics , Genetic Predisposition to Disease , Systemic Inflammatory Response Syndrome/genetics , ATP-Binding Cassette Transporters
SELECTION OF CITATIONS
SEARCH DETAIL